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MATHEMATICAL MODELS OF SOFTWARE QUALITY ASSURANCE
FOR INTERPRETATION OF DYNAMIC NEURAL NETWORKS

The article considers mathematical methods of software engineering in the problems of software quality
assurance of intelligent systems. The indicators of functional suitability and freedom from risk in accordance
with the international standard ISO/IEC 25010 are used as evaluation characteristics of software quality. The
aim of the work is to improve the quality of dynamic neural network interpretation software using more ade-
quate and accurate surrogate models in the form of functional series based on multidimensional weight func-
tions. To achieve this goal, the following tasks were solved: the structures of neural networks for modeling non-
linear dynamic objects were investigated, analytical dependencies between the parameters of neural networks
and multidimensional weight functions of the object were established; the method of constructing nonlinear
dynamic models of time delay neural network interpretation in the form of functional series was further devel-
oped. The scientific novelty of the work lies in determining the information connection between time delay neu-
ral networks and functional series based on multidimensional weight functions. To reduce the computational
volume of neural network training process, a linear rectification function is used as an activation function. To
simplify the mathematical calculations, the linear rectification function is approximated by a polynomial in a
certain interval. The practical utility of the work is to develop an algorithm for constructing surrogate models
of nonlinear dynamic objects in the form of the functional series based on multidimensional weight functions
by the results of training a time delay neural network. The practical significance of the obtained results is to
improve the accuracy of neural network interpretation models used in intelligent systems software. The study
of the proposed nonlinear surrogate model is carried out on the example of a test nonlinear dynamic object.
The experiment demonstrates the advantages in accuracy of the surrogate models in the form of a functional
series over the linear surrogate model.
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Introduction. Computer system software has
become extremely widespread in the modern world.
Almost all branches of the national economy use
computers with specialized software to solve a
variety of tasks from office activities to applied tasks
of control, management, diagnostics and prediction of
the behavior of objects and processes of any nature.
As the scope of specialized software use grows, so do
the requirements for its quality. In these conditions,
insufficient quality of software becomes not only a
weakness but also a danger in critical areas of activity:
production processes, transportation, medicine, etc.
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Therefore, ensuring the quality of software used in
these areas is an important issue.

One of the areas of software engineering that has
been developing rapidly in recent years is intelligent
systems and machine learning. This area, of course,
belongs to the critical areas of activity, so the issue
of ensuring the quality of software for intelligent
data processing is an urgent and, in general, unsolved
problem.

The evaluation characteristics of software
quality are regulated by the international standard
ISO/IEC 25010. According to the standard, the set
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of characteristics and attributes of the quality model
that reflect the requirements for the functioning of a
software product is defined, among other things:

— Functional suitability: the ability of the software
to solve the tasks required by users in certain
conditions,

— Freedom from risk: the ability of the software to
mitigate the negative effects of economic, health and
safety risks.

Both characteristics depend on the adequacy and
accuracy of the mathematical models used in machine
learning.

The task of improving the quality of software for
intelligent systems is complicated by the fact that
the vast majority of modern control objects have
nonlinear and dynamic properties, due to which they
can function in more complex modes that cannot be
realized using linear characteristics. In view of this,
a significant improvement of these characteristics of
the quality of software of intelligent systems can be
achieved not so much with the help of technological
and organizational means as through the development
of mathematical and algorithmic methods of software
engineering. This paper is devoted to the improvement
of mathematical models of machine learning as an
effective method of software quality assurance.

Statement of the problem. An analysis of recent
research and publications has revealed a lack of
mathematical methods for improving the quality of
software of intelligent systems, including methods
based on the construction of nonlinear surrogate
models that interpret the work of neural network
(NN) [9-11]. Therefore, the task of ensuring the
quality of intelligent systems software by building
interpretation models in the form of functional series
based on multidimensional weight functions [4, 12]
instead of linear surrogate models that replace NN is
relevant and promising.

This work is aimed at eliminating the existing gap
and is focused on the study of mathematical methods
for improving the quality of intelligent systems
software in the tasks of modeling dynamic objects
with nonlinear characteristics and identifying the
scope of their effective application in solving applied
identification problems in critical areas of activity. This
determines the purpose and objectives of this study.

Analysis of recent research and publications.
In modern modeling of complex objects, NN are
widely used. The convenience of using NN is due
to the possibility of their construction only on the
basis of measured data at the input and output
of the object without any assumptions about the
structure of the object and the internal laws of its

functioning [1, 2]. Therefore, the use of NN to
describe nonlinear dynamic objects, in particular,
with continuous characteristics, is also becoming
more widespread.

However, due to the high nonlinearity and complex
interactions of a large number of parameters, NN do
not explicitly reflect the structure and internal laws of
the object’s functioning [3]. As a result, NN do not
provide transparency of the transformation of input
data into output. Such structures are not convenient
for studying the behavior of complex objects
compared to analytical models, so finding ways to
combine the advantages of NN and analytical models
is a promising area of research to solve the problem
of identifying complex objects [3, 4].

An effective way to improve the quality of software
is to use more adequate and accurate mathematical
models (surrogate models) that replace NN and, in
some cases, interpret their behavior for humans.

Today, methods for building linear surrogate
models are common [5, 6]. However, such models are
oflittle use for identifying nonlinear objects. Forawide
class of nonlinear dynamic objects, the relationship
between the influence x(7) and the response y(¢) can be
explicitly represented by a functional (integral-step)
series based on multidimensional weight functions
[7, 8]. Due to the simultaneous consideration of
nonlinear and inertial properties of the object, these
models provide high adequacy of the control object
and solution accuracy.

The aim of the article is to improve the quality of
software for the interpretation of dynamic NN by using
more adequate and accurate surrogate models in the
form of functional series based on multidimensional
weight functions.

To achieve this goal, the following tasks were set.

1. Selecting and studying the structure of NN for
modeling nonlinear dynamic objects.

2. Establishing analytical dependencies between
the parameters of the NN and the multidimensional
weighting functions of the object.

3. Development of an algorithm for constructing
a surrogate model in the form of a functional series
based on multidimensional weight functions based on
the results of NN training.

Dynamic models based on neural networks.
Several methods are known for modeling nonlinear
dynamic objects using NN [13]: dynamic neuro-
spatial mapping (Dynamic Neuro-SM) [13-16],
dynamic Wiener-type DNN [13, 17-19], and time-
delayed NNs (TDNN) [12, 20, 21]. Among these
model variants, TDNN is the most general structure
consisting of several layers with direct signal
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propagation [4, 12, 21]. Such models are capable of
learning from the input-output data of objects and
have excellent convergence properties [4, 12, 21],
which is an advantage over the aforementioned
Dynamic Neuro-SM and Wiener-type DNN methods.

There are many TDNN structures: with multiple
hidden layers, different activation functions, and
topologies. In this paper, we consider a common
TDNN structure consisting of three layers: input,
hidden and output.

The TDNN input layer includes M neurons,
where M is the memory size of the object model. The
number of neurons M is chosen to best reflect the
dynamic properties of the object [4, 12]. The layer
receives input data x(z,)=[x(z,), x(¢,1), .. » X(£,0.0)],
t,=nAt,n=1,2, ...

The hidden layer includes K neurons with a nonlinear
activation function. The number of neurons K is chosen
to best reflect the nonlinear properties of the object.

The output layer includes 1 neuron with a linear
activation function. The signal y(z,) at the output
layer at time #, depends both on the value of the input
signal x(z,) at the current time ¢,, and on the input
data x(¢,.,), ... , x(¢,,.,) at times ¢4, ..., ¢,,,,- Thus, the
output data y(¢,) of the TDNN model is determined by
the expression [12]:

»t,)=b, + Soi w, S, [b,. + i wi,jx(tnj)] )

where b,, b; are the biases of the output and hidden
layer neurons, respectively; S, S; are the activation
functions of the output and input layer neurons,
respectively; w, w,; are the weighting coefficients of
the output and hidden layer neurons, respectively.

The most commonly used neuronal activation
function S; in the literature is the sigmoid and its
derivatives, such as the hyperbolic tangent. Other
activation functions can also be used, such as
polynomial, sinusoidal, Gaussian, etc., or their
combinations, depending on the purpose of a
particular application.

The use of these functions has several advantages:
they are nonlinear functions that approximate other
nonlinear functions well; they are not discrete
(stepwise), which makes activation analogous; they
have smooth continuous derivatives.

Functional series based on multidimensional
weight functions. Nonlinear systems with dynamic
characteristics can be conveniently described using
functional series based on multidimensional weight
functions [4, 8, 12]. In the discrete form, functional
series are used to describe an object with one input
and one output in the time domain in the form of:
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where v,(ki,..., k,) is a multidimensional weighting
function of the p” order in discrete form (p=1,2,3....),
symmetric with respect to the real variables k...,
k,, n is the current count; [0, n] is the summation
interval, practically limited by the finite duration of
the memory effect in the system.

The functional series based on multivariate weight
functions (2) is a generalization of the power series
to a functional space. The first term of the series is
a well-known convolution integral, and the higher-
order terms take into account higher-order dynamic
nonlinearities. Thus, series (2) generalizes the
convolution integral to the case of nonlinear objects.

The use of functional series makes it possible to
take into account the nonlinear and inertial properties
of an object more fully and accurately, makes the
identification procedure more universal, and increases
the accuracy of identification. These properties of
models of nonlinear dynamic systems based on
functional series have led to their widespread use
in solving problems of modeling, identification, and
synthesis of nonlinear systems.

Information connection of TDNN models and
functional series. To date, there is no universal
mathematical apparatus for converting NN into
functional series. For the NN with the above-
mentioned common activation functions (sigmoid,
hyperbolic tangent, etc.), there have been attempts in
the literature to build surrogate models in the form of
functional series [12, 22].

But these functions have significant drawbacks.
First, when moving away from the point x=0, the
values of S(x) of the sigmoidal function tend to react
weakly to changes in the variable x. Consequently,
the derivative in such regions takes small values,
which leads to problems with the calculation of
the gradient in the computer implementation of the
learning algorithm: the gradient does not change due
to extremely small values of the derivative. This leads
to the fact that the NN refuses to learn further or does
so extremely slowly [23, 24].

In order to reduce the computational burden and,
therefore, speed up the training of NN, the linear
rectification function (ReLU) is used as an activation
function in practice:

S, = max(0, x) 3)

The ReLU function retains all the advantages of
using a sigmoidal function: it is a nonlinear function
that approximates other nonlinear functions well; it is
notdiscrete (stepwise), whichmakes activationanalog;
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it has smooth continuous derivatives. In addition, this
function is able to "dilute" neuronal activation. For
example, for an NN with a large number of neurons,
using a sigmoidal function as an activation function
will cause all neurons to be activated to describe the
network output. This is computationally expensive. If
some neurons with negligible values of the activation
function are excluded from the computational
process — dilute the activation — the computational
load will be significantly reduced, and the calculations
will become more efficient. This is exactly what the
activation function of ReLU can do, returning 0 for
negative values of x [23, 24].

The disadvantage of a ReLU activation function
NN is the difficulty in training. Most algorithms for
training and optimizing NN parameters, including
those based on the principle of backward error
propagation, require a smooth activation function.

A well-known practice for solving this problem is
to use a polynomial function that is as close as possible
to the activation function in a certain interval [-q, g]:

S, = i a,x’ 4)
=0
where p is the order of the Il;olynomial, p=0,12,...

If we approximate function (3) with a polynomial
(4) on a certain interval [-¢, ¢] and the function S, =x
to simplify mathematical calculations, the expression
for the network model (1) can be written as follows:

K H M ’
J’(”)_bo+Z.:Wizoap(bi+z(;wi,/x(”_j)] (5)
i= p= J=

Analyzing expressions (2) and (5), we can conclude
that they are isomorphic with respect to each other.
Therefore, to build a surrogate model for TDNN, it is
necessary to establish an information link between the
functional series (2) and the TDNN models (5).

Thus, by setting the degree of the approximating
polynomial H, it is possible to obtain the information
connection of models in the form of TDNN and
functional series in an analytical form.
p=0:
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Expressions (7), (9), (11), (13) are estimates of
multivariate weight functions of orders p=0, 1, 2,
3, respectively, obtained using TDNN. Similarly,
expressions for estimates of multivariate weight
functions of higher orders can be obtained, but in
practice, models in the form of functional series of
higher orders are rarely used.

Thus, the estimates of multidimensional weight
functions can be expressed in terms of the neuronal
bias values b, b; and weight coefficients w, w;;
(i=1,...,K, j=1,...,M) of the output and hidden layers
of the NN, respectively, and the coefficients a, of the
polynomial approximating the activation function in
the hidden layer.

The accuracy of the approximation of the
polynomial function (4) is closely related to the quality
of the NN. Therefore, to calculate the polynomial
approximation of function (3) on the set {x; , max(0,
X;)} (where x; are random values on the interval [-¢, ¢]
with a normal distribution), a least-squares regression
method is used [25].

To calculate the polynomial approximation of
the ReLU on the standard normal distribution, we
use the polynomial function Polynomial.fit from the
Python numpy package. Using this function for the
input data {x, , max(0, x,)} and different orders p of
the approximation function gives sets of coefficients
a; , i=1,...,p. The results of approximating the ReLU
function using polynomials of different orders with
a standard normal distribution of 99.73% on the
interval [-3, 3] are shown in Table 1.

A method for constructing a nonlinear dynamic
surrogate model. The significant practical value of the
constructed connection of TDNN-based models and
functional series based on multidimensional weight
functions lies in the further development of the method
for estimating multidimensional weight functions
directly from the parameters of the NN [4, 12, 22]. This
method is useful in the tasks of ensuring the quality of
intelligent systems software by using more adequate
and accurate surrogate models in the form of functional
series based on multidimensional weight functions.

The algorithm of the method of constructing
surrogate models in the form of functional series based
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Table 1
Approximation of the linear rectification function using polynomials of different orders
The degree of a polynomial Polynomial S; Acc?racy
approximations
1 0.85714286 + 1.5 x 1.857
2 0.1992 + 0.5002 x + 0.1997 x? 0,279
3 0.1995 +0.5002 x + 0.1994 x2 — 0.0164 x* 0,161
4 0.1298 + 1.500-x + 2.5909-x*> — 0.0001 x* — 1.2272-x* 0.038

on the results of training TDNN with the activation
function ReLU takes the following sequence of steps:

Step 1. Determine the model memory size M, the
number of neurons in the hidden layer K, and the
modeling accuracy e.

Step 2. Set the set D(¢1)={x(¢,), (¢, )} — training set,
n=1,...,N, where N is the number of measurements in
the input-output experiment; define the operation of
preliminary data normalization by the expression:

D ()=[(D(2)-mean(D(2)))/(max(D(1))-min(D(2))] (14)

Step 3. Take the number of training iteration s=1,
initialize the shift vectors B=[b,, b;] and the weighting
coefficients W=[w,, w, ] (i=1,....K, j=1.,...,.M) using a
random value on the interval (0,1).

Step 4. Determine, based on one of the back
propagation algorithms, the bias errors b, b; and the
weighting factors w;, w;; of the NN.

Step 5. Check the conditions for completing the
training. If e, (f) < e go to Step 6, otherwise s=s+1
and go to Step 4.

Step 6. Determine the multidimensional weighting
functions using expressions (6)-(13).

The above algorithm can be compactly written
using pseudocode:

Algorithm: surrogate nn_model

Input: M, K, ¢, E, N, D

Output: V,

normalize <— D
Dtrain ’ Dtest D

random — B[K], W[M, K]

epoch «— 0

while epoch < E or e, (t) > e do

epoch «— epoch + 1

fori=1,.. Ndo

evaluations < training procedure(B, W, D .. , e

end for

loss «— mse(B, W, D )

end while

Ve— bwf(B, W)

Investigation of the accuracy of a nonlinear
surrogate model in the form of a functional series.
The study of the proposed nonlinear surrogate model is
carried out on the example of a test nonlinear dynamic
object. The simulation model of the test object with
a first-order dynamic block and a nonlinear feedback
block [4] is shown in Fig. 1.
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Fig. 1. Simulation model of the test nonlinear
dynamic object

The feedback block uses a nonlinear function with
saturation as f{y):

Y >D
L) =1k-y.|y[<p
=5y <-p
where s is the saturation level, p is the saturation start
point, and k=s/p is the gain. The following parameters
of the simulation model were adopted: 0=2.64; s=0.7,
p=0.7, k=1.

To determine the accuracy of the proposed
surrogate model in the form of a functional series
based on multidimensional weight functions y,(¢), the
test nonlinear dynamic object is identified based on
the results of input/output experiments. The obtained
results are compared with the simulation model
(1), the neural network model y/(f), and the linear
surrogate model y (), built on the same data (Fig. 2).
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Fig. 2. Comparison of the surrogate model in the form
of a functional series y,(7) with the simulation model
(), the neural network model y,(7), and the linear
surrogate model y,(7)
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The experiment demonstrates the advantages in
accuracy of the surrogate model in the form of a functional
series y,(f) over the linear surrogate model y,(?).

Conclusions. The work is devoted to the study of
mathematical methods for improving the quality of
intelligent systems software in the tasks of modeling
dynamic objects with nonlinear characteristics and
identifying the scope of their effective application in solving
applied identification problems in critical areas of activity.

To model a dynamic object with nonlinear
characteristics, the structure of an artificial neural
network with time delays is substantiated. The
analytical dependence between the weight coefficients
of the neural network with time delays and the
multidimensional weight functions of a nonlinear
object is established.

The method of constructing nonlinear dynamic
models for the interpretation of neural networks with
time delays in the form of a functional series has been
further developed. The advantage of the developed
method in comparison with the existing ones is the
increase in the training speed of a neural network
with time delays by using the activation function of
linear rectification.

The algorithm of the method of constructing a
surrogate model in the form of a functional series
based on multidimensional weight functions in the
form of pseudo-code of the software of an intellectual
system is created.

The created algorithm makes it possible to build
nonlinear surrogate models that have advantages in
accuracy over linear surrogate models.
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®omin 0.0., Kpukyn B.A., OpaoB A.A., Tarapun O.B., Jlituncekuii B.B. MATEMATHUYHI
MOJIEJI 3ABE3ITEYEHHSA SIKOCTI TIPOT'PAMHOTI'O 3ABE3INEYEHHSI IHTEPITPETAIIT
JIAHAMIYHUX HEMPOHHUX MEPEX

Pozensaoaromvca mamemamuuni memoou iHxceHepii npoepamHo2o 3abe3nedents 6 3a0auax 3aoe3nevents
AKOCMI NPOSPAMHO20 3a0e3nedeH s IHMeleKMYaibHUX cucmem. B akocmi oyiHouHux xapaxmepucmux AKocmi
npoepamHo20 3abe3nedentss NPUUHAMI NOKA3HUKU QYHKYIOHATLHOI Npuoamnocmi ma c60000u 6i0 pusuxy
32100 midicnapoonum cmanoapmom ISO/IEC 25010. Memoio pobomu € niosuwgenns aKocmi npocpamHoco
3abe3neuenms iHmepnpemayii OUHAMIYHUX HEUPOHHUX MePedC ULISIXOM GUKOPUCMAHHS OLIbU adeKeamuux ma
MOYHUX CYPOAMHUX MoOenell Y 8ueisiol QYyHKYIOHATbHUX PAOI6 HA OCHOBI OA2aMOBUMIDHUX 8A208UX (DYHK-
yiu. [{nsa 0ocsenents nocmaesienol memu UPILLeHo HACMYNHI 3a80aHHs. 00CTIONCEHO CIPYKIMYPU HeUPOHHUX
mepedic 015l MOOeNOBAHHSL HeAIHIUHUX OUHAMIYHUX 00 €KmMis, 6CMAHOBIEHO AHAMTMUYHI 3A1EICHOCIT MIJIC
napamempamu HelpoHHUMU Mepexcamy ma 0a2amosUMipHUMU 8a208UMU QYHKYiaMU 00 ekny; HabY6 NoOA1b-
U020 PO3BUMKY Memoo no6y008U HENIHIUHUX OUHAMIYHUX MoOelell IHmepnpemayii HetlpOHHUX Mepexc 3 4aco-
BUMU 3AMPUMKAMU Y 8U2TA0T PYHKYIOHATbHUX padis. Haykosa HO8U3HA pobomuU noiaeac y 8UHaA4eHHi ingpop-
MayitiHO20 36 A3KY MIdC HEeUPOHHUMU MEPENCAMU 3 YACOBUMU 3AMPUMKAMU MA QYHKYIOHATbHUMU PAOAMU
Ha OCHOBI 6a2amosUMIPpHUX 6a208UX (YHKYIU. [{1a 3HUNCEHHS 00UUCTIOBAIbHO20 HABAHMANCEHH HABUAHHS
HEUPOHHY Mepedxcy 8 AKOCMI akmusayiiHoi yHKyil ukopucmosyemocs QyHxyia iiHitiHoi pekmugixayii. /{nsa
CHPOWeHHA MaAMEeMaAMUYHUX BUKIAO0O0K (QYHKYIIO NiHIUHOT peKmugikayii anpoKCuMo8aHo NONIHOMOM HA Neg-
Homy inmepeani. llpakmuyna Kopucms pobomu noiseae y po3pooyi aneopummy memooy nobyoosu cypozam-
HUX MOoOejlell HeNHIUHUX OUHAMIYHUX 00 €KmMi8 y 6uesidi JyHKYIOHANbHO2O pady HA OCHOBI 0a2amosuUMIpHUX
8a208UX (DYHKYIN 3a pe3yibmamamu HA8UAHHSA HeUpoHHOI Mepedxci 3 uacosumu zampumkamu. [Ipakmuune
SHAYEHHS 00ePHCAHUX Pe3VIbmamie noiieac y nio8UWeHHi moyHocmi mooenel iHmepnpemayii HeupoHHUX
Mepedc, WO BUKOPUCMOBYIOMbCS 8 NPOSPAMHOMY 3a0e3nedeHHi iHmereKmyaibHux cucmem. JlocniodceHus
3a-NPONOHOBAHOI HENIHIUHOI CYPO2amHOi MOOeNi NPOBEOeHO HA NPUKLAO] MeCmO08020 HENIHIUHO20 OUHAMIY-
Hoeo 00 ’ekma. Excnepumenm demoncmpye nepegazis 8 mouHOCHI CypoeamHoi Mooeii y 6uenaoi QpyHKYioHA b=
HO20 ps0y HAO NIHIUHOK CYPOAMHOK MOOEILIIO.

Knrouosi cnosa: meiliponni mepedici 3 4aco8uMu 3ampUMKAMU, CYPOLAMHI MOOel, HeNiHitiHi OUHAMIUHI
00 ’exmu, AKICMb NPOSPAMHO0 3a0e3NeyeHHs.
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